基于分数阶神经网络的永磁电机切换电流预测方法
作者:
作者单位:

合肥财经职业学院智慧财经与商务学院,安徽 合肥 230601

作者简介:

通讯作者:

基金项目:

2024年安徽省高校自然科学研究项目(2024AH051795)。


Fractional Order Neural Network Based Switching Current Prediction Method for Permanent Magnet Motor
Author:
Affiliation:

School of Smart Finance and Business, Hefei Finance and Economics College, Hefei, Anhui 230601, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    永磁电机切换过程中,因内部电磁场、非线性动态特性及外部负载等多因素耦合作用,电流波动剧烈且难以预估。为增强电机运行稳定性,提出基于分数阶神经网络的切换电流预测方法。先构建涵盖电压、磁链与转矩的方程组,以精准描述电机动态特性;再运用最小二乘法迭代优化,实现模型参数的高精度辨识;以辨识所得电感值与实时测量值作比,获取电感偏差,并将其纳入分数阶神经网络输入;该网络借助分数阶微积分理论刻画神经元动态,精准捕捉电流变化规律,达成可靠预测;在负载从25%递增至175%的工况下开展实验。结果表明:该方法预测时最大振荡幅度仅 0.5%,预测精度与稳定性俱佳,有效降低了电流波动,为电机控制系统稳定运行提供了重要技术保障。

    Abstract:

    During the switching process of permanent magnet motors, the current fluctuates intensely and is difficult to predict due to the coupling effect of multiple factors such as internal electromagnetic fields, nonlinear dynamic characteristics, and external loads. To enhance the operational stability of the motor, this paper proposes a switching current prediction method based on fractional-order neural networks. The research first constructs a set of equations covering voltage, flux linkage, and torque to accurately describe the dynamic characteristics of the motor. Then, the least squares method is used for iterative optimization to achieve high-precision identification of model parameters. The deviation of the inductance value obtained through identification from the real-time measured value is obtained and included in the input of the fractional-order neural network. This network uses the theory of fractional calculus to describe the dynamics of neurons, accurately captures the current change patterns, and achieves reliable prediction. Experiments were conducted under the condition that the load increased from 25% to 175%. The results show that the maximum oscillation amplitude during prediction is only 0.5%, demonstrating excellent prediction accuracy and stability, effectively reducing current fluctuations, and providing an important technical guarantee for the stable operation of the motor control system.

    参考文献
    相似文献
    引证文献
引用本文

胡平.基于分数阶神经网络的永磁电机切换电流预测方法[J].西昌学院学报(自然科学版),2025,39(2):84-92.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-02-11
  • 最后修改日期:2025-05-15
  • 录用日期:2025-05-16
  • 在线发布日期: 2025-07-10
Baidu
map