基于NSGA-II优化的智能制造系统风险因子评价模型
作者:
作者单位:

厦门软件职业技术学院软件工程学院,福建 厦门 361024

作者简介:

通讯作者:

基金项目:

2023年安徽省高校科研重点项目(2023AH051489)。


Risk Factor Evaluation Model for Intelligent Manufacturing Systems Based on NSGA-II Optimization
Author:
Affiliation:

School of Software Engineering,Xiamen Software Vocational and Technical College, Xiamen 361024, Fujian, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 为有效评估智能制造系统中的潜在风险,提升风险管理的精准度与效率,提出基于非支配排序遗传算法(non-dominated sorting genetic algorithm II,NSGA-II)优化的智能制造系统风险因子评价模型。方法 遵循完整性、可操作性、可比性等原则建立智能制造系统风险因子评价模型;对初建的评价指标体系实施约简,以提高评价效率;采用核心指标数据作为优化神经网络的输入源,通过集成带精英策略的NSGA-II,对神经网络深度优化;通过设定最小化训练数据的均方误差以增强拟合能力,并最小化权值平方和以促进模型泛化性能;利用经过NSGA-II优化后的神经网络,实现智能制造系统中风险因子精准、高效评价。结果 在6种智能制造企业的风险评价中,评价对数损失均低于0.1,显示了该方法的有效性。结论 该方法能快速响应智能制造企业的风险变化,为决策者提供及时且准确的风险评估结果,不仅提高了风险评价的精准度和效率,还具有一定的实用价值,有助于智能制造企业更好地进行风险管理。

    Abstract:

    Objective To effectively evaluate potential risks in intelligent manufacturing systems and improve the accuracy and efficiency of risk management, a risk factor evaluation model for intelligent manufacturing systems based on non-dominated sorting genetic algorithm II (NSGA-II) optimization is proposed.Method A risk factor evaluation model is established for intelligent manufacturing systems based on principles such as integrity, operability, and comparability. The initial evaluation index system is reduced to improve evaluation efficiency. Core indicator data is used as the input source for optimizing the neural network, which is deeply optimized by integrating the NSGA-II with elite strategies. The minimum mean square error of training data is set to enhance fitting ability, and the sum of squared weights is minimized to promote model generalization performance. NSGA-II optimized neural networks are utilized to achieve accurate and efficient evaluation of risk factors in intelligent manufacturing systems.Result The logarithmic loss of evaluation is less than 0.1 in the risk assessment of six intelligent manufacturing enterprises, demonstrating the effectiveness of this method.Conclusion This method can quickly respond to the risk changes of intelligent manufacturing enterprises and can provide timely and accurate risk assessment results for decision-makers. It not only improves the accuracy and efficiency of risk assessment, but also has certain practical value, which helps intelligent manufacturing enterprises to better deal with risks.

    参考文献
    相似文献
    引证文献
引用本文

林美娥.基于NSGA-II优化的智能制造系统风险因子评价模型[J].西昌学院学报(自然科学版),2025,39(2):93-101.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-09-18
  • 最后修改日期:2024-11-07
  • 录用日期:2024-11-29
  • 在线发布日期: 2025-07-10
Baidu
map